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Abstract:The Lindley distribution has been generalized by many authors in recent 

years. However, all of the known generalizations so far have restricted tail 

behaviors. Here, we introduce the most flexible generalization of the Lindley 

distribution with its tails controlled by two independent parameters. Various 

mathematical properties of the generalization are derived. Maximum likelihood 

estimators of its parameters are derived. Fisher’s information matrix and 

asymptotic confidence intervals for the parameters are given. Finally, a real data 

application shows that the proposed generalization performs better than all known 

ones. 
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1 Introduction 

The Lindley distribution was first introduced by Lindley [14] whose probability density function 

(pdf) is 

                                          (1) 

for x > 0 and θ > 0. The corresponding cumulative distribution function (cdf) is 

                                           (2) 

for x > 0 and θ > 0. In recent years, this distribution has been generalized by many authors: a 

generalized Lindley (GL1) distribution due to Zakerzadeh and Dolati [23] with the pdf 

                                  (3) 

 

for x > 0, α > 0, θ > 0 and γ > 0; a weighted Lindley (WEL) distribution due to Ghitany et al. [8] 
with the pdf 
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                                 (4) 

for x > 0, c > 0 and θ > 0; a generalized Lindley (GL2) distribution due to Nadarajah et al. [16] with 

the pdf 

)     (5) 

for x > 0, α > 0 and λ > 0; an extended Lindley (EL) distribution due to Bakouch et al. [2] with the 

pdf 

        (6) 

for x > 0, α ∈ (−∞,0) ∪ {0,1}, β > 0 and λ > 0; the exponential Poisson Lindley ( EPL ) distribution 

due to Barreto-Souza and Bakouch [3] with the pdf 

                          (7) 

for x > 0, θ > 0 and β > 0; the power Lindley (PL) distribution due to Ghitany et al. [7] with the pdf 

                                  (8) 

for x > 0, α > 0 and β > 0; the quasi Lindley (QL) distribution due to Shanker and Mishra [21] with 

the pdf 

                                             (9) 

for x > 0, α > −1 and θ > 0; and the log Lindley (LL) distribution due to Gomez-Deniz et al. [9] 

with the pdf 

                                 (10) 

for 0 < x < 1, σ > 0 and λ > 0. We are aware of no other generalizations of the Lindley distribution. 

But the Lindley distribution and its generalizations proposed so far have limited tail behavior: 

the Lindley distribution is restricted to have fL(0) fixed at a finite value and fL(x) ∼ Kxe−θx as x 

→ ∞, where the polynomial power of the upper tail is 1; the−GL1 distribution due to Zalerzadeh− 

and Dolati [23] is restricted to have fGL1(x) ∼ K1xα 1 as x → 0 and fGL1(x) ∼ K2xαe θx as x → 

∞, where both polynomials are controlled by− α; the WEL distribution due to Ghitany− et al. [8] is 

restricted to have fWEL(x) ∼ K1xc 1 as x → 0 and fWEL(x) ∼ K2xce θx as x → ∞, where both 

polynomials are controlled −by c; the GL2 distribution due to Nadarajah et al. [16] is restricted to 

have fGL2(x) ∼ K1xα 1 as x → 0 and fGL2(x) ∼ K2xe−λx as x → ∞, where the polynomial power 

of the upper tail− is 1; the EL distribution due −to Bakouch− β et al. [2] is restricted to have 

fEL(x)−∼ K1xα+β 2 as x → 0 and fEL(x)−∼ K−2xαβ 1e (λx) as x → ∞ if β ≤ 1 and fEL(x) ∼ K1xα 

1 as x → 0 and fEL(x) ∼ K2xα+β 2e (λx) as x → ∞ if β > 1, where both polynomials are controlled 

by α; the EPL distribution due to Barreto-Souza and Bakouch [3] is restricted to have fEPL(0) fixed 

at a finite value and fEPL(x) ∼ Ke−βx as−x → ∞; the PL distribution due −to Ghitany− α et al. [7] 

is restricted to have fPL(x) ∼ K1xα 1 as x → 0 and fPL(x) ∼ K2x2α 1e βx as x → ∞, where both 
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polynomials are controlled by α; the QL distribution due to Shanker− and Mishra [21] is restricted 

to have fQL(0) fixed at a finite value and fQL(x) ∼ Kxe θx as x → ∞, where the polynomial power 

of the upper tail is 1; the LL distribution− due to Gomez-Deniz et al. [9] is restricted to the unit 

interval with fLL(x) ∼ −Kxσ 1 logx as x → 0 and fLL(1) fixed at a finite value. 

We see that the Lindley distribution and all of its known generalizations have restricted tail 

behavior. None of them allow for the tails to behave freely. Here, we introduce the first 

generalization of the Lindley distribution allowing for the most flexible tails. 

Let G(x) be a cdf of a continuous random variable X. Eugene et al. [5] introduced the family of 

beta-generated distributions defined by 

)            (11) 

for α > 0 and β > 0, where 

 

B(a,b) =∫ 𝑡𝑎 − 1(1 −  𝑡)𝑏 − 1d𝑡
1

0
 

 

denotes the beta function and 

 

denotes the incomplete beta function ratio. The pdf corresponding to (11) is 

.                       (12) 

Eugene et al. [5] studied a special case of (11) when F(x) is the cdf of the normal distribution, 

resulting in the beta normal distribution. 

The generalization of the Lindley distribution that we introduce is based on (11). Taking G(x) 

and g(x) in (11) and (12) to be the cdf and the pdf of the Lindley distribution, we obtain 

F(x) = IFL(x)(α,β)                                                       (13) 

and 

)                           (14) 

for x > 0, α > 0, β > 0 and θ > 0. We shall refer to the distribution given by (13) and (14) as the beta 

Lindley (BL) distribution. It is easy to note that f(x) ∼ K1x
α−1 as x → 0 and f(x) ∼ K2x

βe−βθx as x → ∞, 

so the left tail is a polynomial controlled by α, the right tail is a polynomial controlled by β and both 

tails behave independently. This has not been the case with the Lindley distribution or any of its 

generalizations. The parameters α and β in addition control the skewness and kurtosis of the BL 

distribution, allowing for much flexibility. Examples of other beta generalized distributions include 

the beta Weibull distribution due to Famoye et al. [6], the beta exponential distribution due to 

Nadarajah and Kotz [17], the beta gamma distribution due to Kong et al. [12], the beta Pareto 

distribution due to Akinsete et al. [1], the beta generalized Pareto distribution due to Mahmoudi [15] 

and the beta generalized half-normal geometric distribution due to Ramires et al. [20]. 
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If X is a random variable having the BL distribution we shall write X ∼ BL(α,β,θ). The special 

case of the BL distribution for α = β = 1 is the Lindley distribution. The special case for β = 1 is the 

GL2 distribution introduced by Nadarajah et al. [16]. 

Another motivation for the BL distribution is as follows: suppose X1,...,Xβ+α−1 are independent 

Lindley random variables representing the failure times of the components of a α-out-of-β + α − 1 

system. The system will fail as soon as α components have failed. 

 

Therefore, the probability that the failure time of the system say Y is less than x is 

 

the cdf of the BL distribution. 

The rest of the paper is organized as follows. Various mathematical properties of the BL 

distribution are derived in Section 2. The properties discussed include shape of the pdf, expansions 

for the pdf and the cdf, the hazard rate function and its shape, the quantile function, moments and 

related measures, mean residual lifetimes, mean deviations about the mean and median, Bonferroni 

and Lorenz curves, and order statistics properties. In Section 3, we investigate maximum likelihood 

estimators (MLEs) as well as asymptotic confidence intervals for the unknown parameters. An 

application of the BL distribution is discussed in Section 4. 

Some of the mathematical properties in Section 2 involve single infinite sums, see Sections 2.2, 

2.5, 2.6, 2.7, 2.8 and 2.9. Each of these infinite sums is convergent for all parameter values. 

Numerical computations not reported here showed that each of these infinite sums can be truncated 

at 20 to yield a relative error less than 10−25 for a wide range of parameter values. This shows that 

the mathematical properties can be computed for most practical uses with their infinite sums 

truncated at twenty. The computations were performed using Maple 2015. Maple took only a 

fraction of a second to compute the truncated versions. The computational times for the truncated 

versions were significantly smaller than those for the untruncated versions. 

A referee has pointed out to us that BL distribution is a particular case of the beta generalized 

Lindley (BGL) distribution proposed by Oluyede and Yang [18]. The BGL distribution is specified 

by the pdf 

  (15) 

for x > 0, θ > 0, α > 0, a > 0 and b > 0; so, the BL distribution is the particular case for α = 1. 

But this paper is completely independent of Oluyede and Yang [18]. We were not aware of 

Oluyede and Yang [18] while writing this paper. Besides, most aspects reported in this paper 

are different and novel: motivation of the BL distribution as having the most flexible tail 



S.M.T.K. MirMostafaee , M. Mahdizadeh , Saralees Nadarajah                                 607 

 

607 

behavior, no such motivation was given in Oluyede and Yang [18]; motivation of the BL 

distribution as the distribution of the failure time of a system, no such motivation was given in 

Oluyede and Yang [18]; explicit expressions for quantile function, no such explicit expressions 

were given in Oluyede and Yang [18]; expansions for the pdf as single infinite sums, the 

corresponding expansions in Oluyede and Yang [18] involve double infinite sums; expansions 

for the cdf as single infinite sums, no such expansions were given in Oluyede and Yang [18] ; 

explicit expressions for moments as single infinite sums, the corresponding expressions in 

Oluyede and Yang [18] involve quadruple infinite sums; explicit expressions for mean 

deviations about the mean and median as single infinite sums, the corresponding expressions in 

Oluyede and Yang [18] involve double infinite sums; explicit expressions for Bonferroni and 

Lorenz curves as single infinite sums, the corresponding expressions in Oluyede and Yang [18] 

involve double infinite sums; explicit expressions for moments of order statistics, no such 

explicit expressions were given in Oluyede and Yang [18]; explicit expressions for moment 

generating function, no such explicit expressions were given in Oluyede and Yang [18]; explicit 

expressions for mean residual lifetime, no such explicit expressions were given in Oluyede and 

Yang [18]; explicit expressions for the Fisher information matrix, no such explicit expressions 

were given in Oluyede and Yang [18]; a more comprehensive data application with fits 

compared to every known generalization of the Lindley distribution; the BGL distribution does 

not provide a significantly better fit than the BL distribution in the data application. 

 

2 Mathematical properties 

Here, we derive various mathematical properties of the BL distribution: shape of the pdf 

(Section 2.1); expansions for the pdf and the cdf (Section 2.2); quantile function ( Section 2.3); 

hazard rate function and its shape (Section 2.4); moments (Section 2.5); moment generating function 

(Section 2.5); variance (Section 2.5); skewness (Section 2.5); kurtosis (Section 2.5); moments of the 

residual life (Section 2.6); mean residual life (Section 2.6) ; mean deviations about the mean and 

median (Section 2.7); Bonferroni curve (Section 2.8) ; Lorenz curve (Section 2.8); pdf, cdf and 

moments of order statistics (Section 2.9). R codes for computing some of these properties are given 

in the appendix. 

 

2.1 Shape of the pdf 

It follows from (14) that 

 

where F(·) is given by (13). The following results can be deduced 

• If 0 < α < 1 or if α = 1 and θ ≥ 1, then the pdf is monotonically decreasing. 

• If α > 1 or if α = 1 and 0 < θ < 1, then the pdf is unimodal ( increasing-decreasing ) and attains 

its maximum at x = x0, where 

. 

Figure 1 plots f(x) for selected parameter values. 
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2.2 Expansions for the pdf and the cdf 

Using the series expansion, 

, 

the pdf of the BL distribution can be expanded as 

 

and 

, 

Where 𝐹𝐿
̅̅ ̅(. ) = 1 − 𝐹𝐿(. )denotes the survival function. The corresponding expansions for the cdf of 

the BL distribution are 

 

and 

, 

where FGL(x;α,θ) denotes for the cdf corresponding to fGL(x;α,θ). 
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Figurex 1: Pdfs of the BL distribution for selected α, β andx   θ. 
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2.3 Quantile function 

Jodra [11] showed that the quantile function of a Lindley random variable can be expressed as 

, 

where W−1(·) is the negative branch of the Lambert W function, namely the solution of 

W(z)eW(z) = z. The uniqueness of the solution is guaranteed as 0 , see 

Chapeau-Blondeau and Monir [4]. 

If X ∼ BL(α,β,θ), then FL(X;θ) is a beta random variable with shape parameters α and β. So, 
the quantile function of X ∼ BL(α,β,θ) is 

, 

where Iy−1(α,β) denotes the inverse function of Iy(α,β). 

2.4 Hazard rate function 

The hazard rate function of the BL distribution is 

 

It follows from (16) that 

. 

The following results can be deduced 

• If 0 < α < 1, then the hazard rate function is decreasing-increasing (bathtub shaped) and attains 

its minimum at x = x0, where 

. 

• If α ≥ 1, then the hazard rate function is monotonically increasing. 

Figure 2 plots h(x) for selected parameter values. 

2.5 Moments, moment generating function, skewness and kurtosis 

Let X ∼ BL(α,β,θ). The moment generating function and the kth moment of X can be derived as 
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Figure 2: Hazardx rate function of the BL distribution for selected xα, β and θ. 
and 

 

provided that t < βθ, where Γ( denotes the incomplete gamma function. If α 

and β are integers then the latter simplifies to 
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  . 

 
α α 

 
α α 

Figure 3: Mean, variance, skewness and kurtosis of the BL distribution versus α = 0.5,1,... ,10 and β 

= 0.5,1,... ,10 for θ = 1. 

The variance, skewness and kurtosis of X ∼ BL(α,β,θ) can be computed using the relations: 

. 

Figure 3 shows how mean, variance, skewness and kurtosis vary with respect to α and β when θ = 

1. We can observe the following: mean is a decreasing function of α and an increasing function of 

β; variance is a decreasing function of α and a decreasing function of β; skewness is an increasing 
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function of α and a decreasing function of β; kurtosis is an increasing function of α and a decreasing 

function of β. 

2.6 Mean residual lifetime 

Given that a component survives up to time t > 0, the residual life is the period beyond t until 

the failure time. It is defined by the conditional random variable X − t|X > t. It is well-known that 

the mean residual life function and ratio of two consecutive moments of residual life determine the 

distribution uniquely. 

Standard calculations show that the rth order moment of the residual life µr(t) =E [(X − t)r|X 

> t] for the BL distribution can be expressed as 

, 

where ξ(x,a,b) = b−1 hxae−bx + b−a(a − b)Γ(a,bx)i. The particular case r = 1 gives the mean residual 

lifetime as 

 

Figure 4 plots µ1(t) for selected α and β. 

In reliability, the reversed residual life is defined as the conditional random variable t − X|X ≤ t. 

This random variable is the time elapsed from the failure of a component given that its life is less 

than or equal to t. Expressions for the rth order moment of the reversed residual lifetime for the BL 

distribution can be derived similarly. 

2.7 Mean deviations 

Two important measures of spread in a population are called the mean deviation about the mean 

(when the distribution is symmetric) and the mean deviation about the median 

 

 
t t t 

Figure 4: Mean residual life function of the BL distribution for some β and α when θ = 2. 
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(when the distribution is skewed). If X ∼ BL(α,β,θ), then the mean deviation about the mean and the 

mean deviation about the median can be given by 

 

and 

 

respectively, where µ and m denote, respectively, the mean and the median of the BL distribution. 

Standard calculations show that 

 

and 

 

2.8 Bonferroni and Lorenz curves 

If X ∼ BL(α,β,θ) then Bonferroni curve is the plot of B (F(x)) versus x, where 

 
 

where µ denotes the mean of the BL distribution. Standard calculations show that 

 

The Lorenz curve of X ∼ BL(α,β,θ) is the plot of L(F(x)) versus x, where L(F(x)) = F(x)B (F(x)). 
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2.9 Order statistics 

Suppose X1,X2,...,Xn is a random sample of size n from the BL distribution. Suppose further X1:n ≤ 

X2:n ≤ ··· ≤ Xn:n are the corresponding order statistics. Then, the pdf, the cdf and the survival function 

of mth order statistic Xm:n = Ym say can be expressed as 

           , (17) 

(18) 

and 

,                    (19) 

respectively. 

These expressions can be simplified using the following from Gradshteyn and Ryzhik [10], 

Section 0.314: for any positive integer j, we have 

,                                            (20) 

where the coefficients cj,i for i = 1,2,... can be obtained from the recurrence relation 

                          (21) 

with . Note that the coefficients cj,i can be obtained directly from cj,0,...,cj,i−1 and then from 

the coefficients a0,...,ai of the original power series. 

Using (20) and (21), the expressions in (17), (18) and (19) can be simplified to 

, 

 

and 

, 

respectively, where   and the constants cn−m+s,i can be 

calculated from (21) as 
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, 

where . So, the coefficients cn−m+s,i can be obtained from cn−m+s,0, 

..., cn−m+s,i−1 and then from w0,...,wi. Finally, the kth moment of Ym can be expressed as 

 

3 Maximum likelihood estimation of the parameters 

In this section, we discuss maximum likelihood estimation of the parameters of the BL distribution. 

Suppose that x1,...,xn is a random sample of size n from the BL distribution. The log-likelihood 

function is 

  (22) 

The MLEs of α, β and θ say α, β and θ, respectively, can be obtained as the solutions of 

the non-linear equations b b b 

 

where Ψ(t)=
d

d𝑡
logΓ(t) denotes the digamma function. Alternatively, the MLEs can be obtained 

by maximizing (22) numerically. We shall use the latter approach in Section 4. The 
maximization was performed by using the nlm function in R (R Development Core Team [19]). 

In Section 4, the function nlm was executed with the following initial values: α = 0.01,0.02,... ,5, 

β = 0.01,0.02,... ,5 and θ = 0.01,0.02,... ,5. Each time the function converged the solutions for the 
MLEs were unique. The function did not converge about five percent of the time. 
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Interval estimation and hypothesis testing of (α,β,θ) requires the expected Fisher information 

matrix. The elements of this matrix say I = (Iij),i,j = 1,2,3 about (α,β,θ) based on a single observation 

can be calculated as 

 

where Ψ ) denotes the trigamma function, 

 
and 

  , 

where Y ∼ BL(α − 1,β + 1), Z ∼ BL(α − 2,β + 2) and 

  . 

Note that  

Under certain regularity conditions (see, for example, Lehmann and Casella [13], pages 461-

463), the asymptotic joint distribution of the MLEs  can be stated as 

  , 
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where denotes convergence in distribution and I−1 is the inverse of the Fisher information matrix 

I with 

  . 

The unknown parameters in the elements of thebmatrix I−1 can be replaced by their corresponding 

MLEs. The asymptotic equal tailed 100(1 − p) percent confidence intervals for the parameters α, β 

and θ are 

, 

respectively, where za denotes the 100a percentile of the standard normal random variable. 

4. Application 

Here, we illustrate the power of the BL distribution by using a real data set taken from Ugarte et al. 

[22]: 

130 126 139 126 124 149 124 138 138 140 127 140 124 124 121 

125 134 121 125 126 122 137 146 127 124 142 122 126 124 126 

121 138 124 126 137 122 131 128 122 144 

The data are the scores of the Stanford-Binet intelligence quotient (IQ) test for forty randomly 

selected, gifted and talented students. Some summary statistics of the data are: the minimum is 121, 

the first quartile is 124, the median is 126, the mean is 129.8, the third quartile is 137.2, the maximum 

is 149, the skewness is 0.790, and the kurtosis is −0.729. We shall refer to the data as IQ data. 

We fitted the following eleven distributions to the IQ data: the Lindley distribution specified by 

the pdf (1); the GL1 distribution specified by the pdf (3); the WEL distribution specified by the pdf 

(4); the GL2 distribution specified by the pdf (5); the EL distribution specified by the pdf (6); the 

EPL distribution specified by the pdf (7); the PL distribution specified by the pdf (8); the QL 

distribution specified by the pdf (9); the BGL distribution specified by the pdf (15); the proposed 

BL distribution specified by the pdf (14); the Weibull distribution specified by the pdf 

f(x) = abaxa−1 exp[−(bx)a] 

for x > 0, a > 0 and b > 0; the gamma distribution specified by the pdf 

 

for x > 0, a > 0 and b > 0. Note that these distributions include all of the known generalizations of 

the Lindley distribution. The BGL distribution has four parameters. The GL1, EL and BL 

distributions have each three parameters. The WEL, GL2, EPL, PL, QL, Weibull and gamma 

distributions have each two parameters. The Lindley distribution has one parameter. The LL 

distribution in (10) was not fitted since it is defined on the unit interval. 
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Each distribution was fitted by the method of maximum likelihood. The BL distribution was 

fitted by following the details in Section 3. 

Table 1 lists the parameter estimates, their standard errors (computed by inverting the expected 

information matrices), the negative log-likelihood values, the values of the Akaike information 

criterion (AIC), the values of the Bayesian information criterion (BIC), and the p-values based on 

the Kolmogorov-Smirnov statistic. 

We see that the BGL distribution has the largest log-likelihood value, but the BL distribution 

has the smallest AIC value, the smallest BIC value, and the largest p-value in spite of the fact that 

the BGL distribution has one more parameter and two other fitted distributions have the same 

number of parameters. Use of the likelihood ratio test shows that the BGL distribution does not 

improve significantly on the fit of the BL distribution. The BGL distribution however has the second 

largest log-likelihood value, the second smallest AIC value, the fourth smallest BIC value, and the 

second largest p-value. The WEL and gamma distributions have the third largest log-likelihood 

value, the third smallest AIC value, the second smallest BIC value, and the third largest p-value. 

The EL distribution has the smallest log-likelihood value, the largest AIC value, the largest BIC 

value, and the smallest p-value. The EPL distribution has the second smallest log-likelihood value, 

the second largest AIC value, the second largest BIC value, and the second smallest p- value. 

Thus we can conclude that the BL distribution provides the best fit among the distributions 

considered here for the IQ data. The second best fit is by the BGL distribution. The third best fit is 

by the WEL and gamma distributions. The worst fit is by the EL distribution. The second worst fit 

is by the EPL distribution. The density and probability plots shown in Figures 5 and 6 confirm these 

observations. The fitted pdf of the BL distribution best captures the empirical histogram. The plotted 

points for the BL distribution are most closest to the diagonal line in the probability plot. 

 

Data 
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Figure 5: Histogram of the IQ data and the fitted pdfs of the BL, QL, Lindley, GL1, WEL, EL, EPL, 

PL, GL2, BGL, Weibull and gamma distributions. 

Appendix: R codes 

Here, we present R functions for computing the quantile function (Section 2.2), moments (Section 

2.5), mean deviation about the mean (Section 2.7) and mean deviation about the median (Section 

2.7). qf computes the quantile function, moments computes the kth moment, mdmean computes the 

mean derivation about the mean and mdmedian computes the mean derivation about the median. 

The qf function makes use of the lambertWm1 function in the R contributed package lamW. This 

package must be installed before calling qf. 

qf=function ( theta,alpha,beta,p ) 

{ tt=(theta+1)*exp(-theta-1) tt=tt*(1-

qbeta(p,shape1=alpha,shape2=beta)) 

tt=1-1/theta-(1/theta)*lambertWm1(-

tt) return(tt) 
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Figure 6: Probability plots for the fits of the BL, QL, Lindley, GL1, WEL, EL, EPL, PL, GL2, BGL, 

Weibull and gamma distributions. 

} 

moments=function ( theta,alpha,beta,k ) 

{ tt=

0 

for (i in 0:100) for (j in 0: k ) 

{ ttt=j*exp((beta+i)*(theta+1)) 

ttt=ttt*gamma(beta+i+j) ttt=ttt*(1-

pgamma((theta+1)*(beta+i),shape=(beta+i+j))) 

ttt=ttt/((beta+i)*(theta+1))**(beta+i+j) 

ttt=ttt+1 

ttt=ttt*choose(alpha-1,i)*choose(k,j) 

ttt=ttt*(-1)**(i+k-

j)*(theta+1)**k/(theta**k*(beta+i)) tt=tt+ttt } 

tt=tt/beta(alpha,beta) 

return(tt) 

} xi=function 

( a,b,x ) 
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{ tt=x**a*exp(-

b*x) tt=tt+b**(-

a)*(a-

b)*gamma(a)*(1-

pgamma(b*x,shape

=a)) tt=tt/b 

return(tt) } 

mdmean=function ( theta,alpha,beta,mu ) 

{ t1=0 t2=0 

t3=0 for (i in 

0:100) 

{ tt=choose(alpha-1,i)*(-1)**i 

ttt=(exp(theta+1))*(theta+1)**(-beta-i) 

t2=t2+tt*ttt*xi(1+theta*(1+mu),beta+i+1,

beta+i) 

t3=t3+tt*ttt*xi(1+theta*(1+mu),beta+i,be

ta+i) 

ttt=(1+theta*mu/(theta+1))**(beta+i) 

t1=t1+tt*ttt*(exp(-

(beta+i)*theta*mu))/(beta+i) 

} tt=-2*mu*t1+(2/theta)*t2-

2*(theta+1)*t3/theta 

tt=tt/beta(alpha,beta) return(tt) } 

mdmedian=function ( theta,alpha,beta,mu,m ) 

{ t1=0 t2=0 

t3=0 for (i in 

0:100) 

{ tt=choose(alpha-1,i)*(-1)**i 

ttt=(exp(theta+1))*(theta+1)**(-beta-i) 

t2=t2+tt*ttt*xi(1+theta*(1+m),beta+i+1,b

eta+i) 

t3=t3+tt*ttt*xi(1+theta*(1+m),beta+i,bet

a+i) ttt=(1+theta*m/(theta+1))**(beta+i) 

t1=t1+tt*ttt*(exp(-

(beta+i)*theta*m))/(beta+i) 

} tt=-2*m*t1+(2/theta)*t2-

2*(theta+1)*t3/theta 
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tt=tt/beta(alpha,beta) tt=tt+m-mu 

return(tt) 

} 
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